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Abstract. The icosahedral to cuboctahedral structural transition in RhN and PdN clusters with closed
atomic shells and increasing sizes (N = 13, 55, 147, 309, 561) is studied using a tight-binding description
of the valence band including sp electrons as well as d electrons assuming an homogeneous relaxation, the
effect of inhomogeneous relaxation being discussed by means of an empirical potential. The critical size at
which the cuboctahedral and icosahedral clusters have roughly the same energy is similar for Rh and Pd.
The potential energy profile for the Mackay transformation which distorts continuously a cuboctahedron
into an icosahedron is also calculated. The cuboctahedral structure is found to be unstable for N = 13 but,
for 55 ≤ N ≤ 561, the potential energy profile exhibits an activation barrier which is expected to persist at
least in some range of larger sizes. This explains the coexistence of both geometries at intermediate sizes.
Finally the electronic structure of these clusters is also discussed.

PACS. 36.40.Ei Phase transitions in clusters – 71.24.+q Electronic structure of clusters and nanoparticles
– 71.20.Be Transition metals and alloys

1 Introduction

In spite of the large number of theoretical and experimen-
tal studies, the atomic structure of small clusters is still the
object of many investigations. When the size of the cluster
decreases, most atoms become surface atoms with low co-
ordination and are subject to forces which lead to an equi-
librium atomic configuration possibly different from that
of a fragment of the bulk phase. Furthermore the relative
stability of two clusters depends on several fundamental
quantities: the number of surface atoms, the orientation of
facets and their relative energies, the stress inside the clus-
ter etc. The determination of the atomic configuration of
small clusters is however of a fundamental importance in
addressing chemical and physical properties, such as catal-
ysis or crystal growth, of any system. Unfortunately for
the moment there exists no direct experimental technique
to determine the structure of free clusters. The only really
direct method for observing clusters is the High Resolu-
tion Electron Microscopy (HREM) [1–3] but of course it
only concerns supported clusters where the substrate may
play a role, and moreover the influence of the high-energy
electron flux on the geometry of the clusters may induce
radiation damage. This damage is drastically reduced in
electron diffraction [4,5] and Extended X-ray Absorption
Fine Structure (EXAFS) [6] experiments but the struc-
tural information is less directly obtained. In these exper-
iments, clusters with five fold symmetry axes have been
observed, whereas such axes are forbidden in perfect crys-
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tals. For instance, icosahedral aggregates have been found
in a large number of experiments on rare gas clusters [7]
and also on metals like Cu, Ag, Au, Ni, Pd, Pt and Co (for
specific references see Ref. [8]). Moreover, the cluster sizes
N = 55, 147, 309, 561 atoms of Ni and Co have revealed
to be particularly stable [9] and have a closed icosahedral
structure (i.e., made of closed atomic shells). From the
theoretical point of view and since the rare gases and all
the metals quoted above have an FCC solid phase (save
for Co which has however an FCC phase at high tem-
perature), it is interesting to study the relative stability
of the closed icosahedral clusters and FCC clusters which
have the same sequence of number of atoms, i.e., closed
cuboctahedral structures.

Several studies of this type can be found in the litera-
ture. Pair potentials (Lennard-Jones or Morse) have been
extensively used for rare gases [10–12]. For instance Doye
and Wales [13] showed recently with a very simple Morse
potential that a wide variety of scenario can be obtained
depending only on the range of the potential. However,
in metals and in particular for noble and transition met-
als, the interactions between atoms are not pairwise and
energy calculations need either more elaborate potentials,
containing at least a many body contribution, or ab initio
methods. In spite of recent progress in the computer power
and in the electronic structure codes, it remains very dif-
ficult to go beyond one hundred of atoms in the latter
methods, especially for transition metal systems for which
the precise description of spd valence electrons remains a
hard task. As a consequence there are many ab initio re-
sults on 13 atom clusters, but very few for larger sizes.
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Among them Bernholc et al. [14] studied Al13 and Al55

and Jennison et al. [15] RuN , PdN and AgN with N = 55,
135 and 140 using massively parallel computer codes. On
the contrary, many empirical or semi-empirical potentials
have been widely used to study the relative stability of
closed cuboctahedral and icosahedral structures: Sutton-
Chen potential [16], second moment potential [17–19], glue
model [20], embedded atom model (EAM) [2,21–23], ef-
fective medium theory (EMT) [24]. Finally, intermediate
between the above types of calculations, the tight-binding
scheme is much less costly in computer time but still de-
scribes systems within the framework of quantum me-
chanics and allows to investigate cluster sizes which are
presently out of reach of ab initio calculations. For in-
stance Lathiotakis et al. [8] used this method to study
NiN clusters up to N = 55. All these works agree in pre-
dicting the higher stability of the icosahedral structure at
very small sizes.

Furthermore, Mackay [25] has quoted that it is possi-
ble to transform the cuboctahedron into an icosahedron
by a simple continuous distortion. As we will see in the
following this distortion preserves many of the symme-
tries of the cuboctahedron and one can think that the
configuration space point follows a valley in the poten-
tial energy surfaces. Thus it is interesting to investigate
if this transformation (or the inverse one) needs an acti-
vation energy or, in other words, if the cuboctahedron is
unstable or metastable relative to this transformation at
sizes for which the icosahedron is energetically favoured
(or vice versa).

We have recently set up a new tight-binding model [26]
using an orthogonal spd basis set from which, contrary to
analytical potentials, the electronic structure and the cor-
responding total energy for any position of the atoms can
be derived. This tight-binding model was shown to be able
to reproduce very accurately the electron energy levels as
well as the total energy of surfaces and very small clus-
ters. In this paper we will apply it to the study of the
relative stability of closed cuboctahedral and icosahedral
clusters RhN and PdN (N = 13, 55, 147, 309, 561) and
the potential energy profile of the Mackay transformation
which, at least to our knowledge, has not been calculated
yet. The paper is organized as follows. In Section 2 we
present a brief summary of the model. Section 3 is de-
voted to the relative stability of the two structures as a
function of the cluster size and atomic relaxation effects
are discussed. The local densities of states are discussed in
Section 4 on the example of RhN . Section 5 presents the
study of the variation of the potential energy during the
Mackay transformation. Finally conclusions are drawn in
Section 6.

2 The model

The tight-binding model used has been described in de-
tails in a previous paper [26], thus we will only re-
call its main features. The Hamiltonian is defined by
its matrix elements in an orthogonal basis set built

from s, p(x, y, z), d(xy, yz, zx, x2 − y2, 3z2 − r2) va-
lence atomic orbitals |iλ〉 centered at each atomic site i.
The intersite elements (hopping integrals) are deter-
mined from the ten Slater Koster hopping integrals
(ssσ, spσ, sdσ, ppσ, ppπ, pdσ, pdπ, ddσ, ddπ, ddδ). A simple
exponential decay of these elements with distance is as-
sumed and three center integrals are neglected. Following
reference [27] the on-site terms of the Hamiltonian are de-
fined in such a way that the total energy is obtained by
summing up the occupied energy levels. This means that
the usual repulsive contribution is accounted for by a de-
pendence on the atomic environment of the on-site terms
that we write in the simple form [27] (λ = s, p, d):

ε0
iλ = aλ + bλρ

2/3
i + cλρ

4/3
i + dλρ

2
i (1)

with

ρi =
∑
j 6=i

exp
(
−pρ(Rij/R0 − 1)

)
. (2)

The parameters of the model are determined by a non-
linear least mean square fitting on ab initio band struc-
ture and total energy curves of two different crystallo-
graphic structures (FCC and BCC) at several interatomic
distances and their values for palladium and rhodium have
been given in our previous publications [26,28].

One should note that these parameters are obtained
from systems in which all atoms are geometrically equiv-
alent therefore with no charge transfers. When they are
used to study systems presenting inequivalent atoms, un-
realistic charge transfers occur, as expected since this is a
well-known drawback of non-self consistent tight-binding
methods. In metallic systems a very efficient screening of
the electrons induces an almost perfect charge neutrality
of each individual atom, therefore we have adopted the
simplest possible approximation that consists in adding a
shift δVi to the on-site terms in order to ensure the local
charge neutrality. Since this potential arises from electron-
electron interactions, one should not forget to subtract the
corresponding double counting term in the expression of
the total energy which is then written as:

Etot =
∑
nocc

εn −Nval

∑
i

δVi (3)

where Nval is the total number of valence spd electrons
per atom of the metal.

3 Relative stability of cuboctahedra
and icosahedra

The cuboctahedron and the icosahedron are two very in-
teresting polyhedra, the first one is an Archimedean solid
whereas the second one belongs to the class of the five
Platonic solids. Besides these historical classifications and
their rather different apparent geometrical shapes, cuboc-
tahedra and icosahedra are very closely linked, since a
cuboctahedron formed of rigid rods can be transformed
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Table 1. The nearest neighbour bond length at equilibrium and the binding energy per atom of cuboctahedral and icosahedral
RhN and PdN clusters with closed atomic shells as a function of the number of atoms N for homogeneously relaxed clusters.

Rh cuboctahedron icosahedron

N R (Å) Ehom
cubo (eV/atom) Rr (Å) Rt (Å) Ehom

ico (eV/atom)

13 2.613 3.472 2.556 2.688 3.748

55 2.656 4.355 2.593 2.726 4.457

147 2.671 4.751 2.606 2.740 4.812

309 2.679 4.970 2.615 2.749 4.998

561 2.683 5.111 2.620 2.755 5.119

∞ 2.694 5.780 2.643 2.779 5.666

Pd cuboctahedron icosahedron

N R (Å) Ehom
cubo (eV/atom) Rr (Å) Rt (Å) Ehom

ico (eV/atom)

13 2.625 2.680 2.578 2.711 2.825

55 2.690 3.093 2.628 2.763 3.148

147 2.711 3.309 2.652 2.788 3.333

309 2.724 3.442 2.660 2.797 3.446

561 2.731 3.527 2.667 2.804 3.521

∞ 2.751 3.923 2.691 2.830 3.882

simply into an icosahedron. The cuboctahedral clusters
are built on the basis of a fixed FCC lattice, and from
this transformation an icosahedral cluster with the same
number of atoms is obtained. These two closed structures
are particularly stable at intermediate sizes. Of course at
mesoscopic sizes the Wulff polyhedron is expected to be
the most stable [24] since it satisfies the Wulff condition
of minimization of surface energy at constant volume, but
this condition only applies for large sizes when edge and
vertex effects become negligible. At intermediate sizes of a
few thousand atoms (sometimes up to 105 atoms) a large
variety of shapes can be observed [1,3] and among them
particles with cuboctahedral or icosahedral symmetry.

In this section we will focus our attention on the rela-
tive stability of closed cuboctahedral and icosahedral clus-
ters of palladium and rhodium when size increases. In a
previous publication [28] we studied the magnetic behav-
ior of small palladium and rhodium clusters of various
shapes and sizes, however we did not perform calculations
on large clusters since the magnetic moment of rhodium
clusters disappears for sizes of more than 100 atoms,
whereas palladium clusters are hardly magnetic. From our
results it also appeared that magnetism does not play an
important role in the relative stability of cuboctahedral
and icosahedral clusters of these elements even at small
sizes. Therefore spin polarization will be neglected in the
present work.

Most of the calculations are based on the self-
consistent tight-binding model described in the previous
section. Within this model the only geometrical opti-
mization that we consider is the “breathing mode” relax-
ation which leads to an homogeneous contraction of the

clusters. We will check in the following the limits of va-
lidity of this simple optimization by using an analyti-
cal empirical potential. However, an unconstrained relax-
ation would be feasible in our model, but much more
time consuming. In all calculations a finite Fermi temper-
ature (0.01 eV) was used to attain convergency without
any computational difficulties, we checked that this Fermi
broadening of the energy levels did not affect the relative
energies of the two geometries. The convergency of the lo-
cal potentials δVi has been considered to be achieved when
the net charge on each atom is less than 5×10−2 electron
and the difference in energy per atom of three consecutive
iterations less than 5 × 10−4 eV. We performed calcula-
tions on all PdN and RhN icosahedral and cuboctahedral
clusters ranging from the smallest, N = 13, to N = 561
(i.e. N = 13, 55, 147, 309, 561).

In the cuboctahedron all atoms have the same first
neighbour distance, R, which is slightly contracted com-
pared to the bulk one, R0, this contraction decreas-
ing monotonically when size increases (see Tab. 1). In
the icosahedron there are two characteristic distances:
the radial nearest-neighbour distance, Rr, (i.e., the dis-
tance between atoms belonging to two adjacent shells)
and the intrashell nearest neighbour distance, Rt, which
is about 5% larger than the former (Rt = ricoRr

with rico = (2(1− 1/
√

5))1/2 ≈ 1.05146). At equilibrium
we find that Rr (Rt) is slightly smaller (larger) than
the value of R in the corresponding cuboctahedron and
(Rr +Rt)/2 ' R (see Tab. 1).

The binding energy per atom (positive) of RhN and
PdN cuboctahedrons and icosahedrons of increasing sizes
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Fig. 1. (a) The difference of binding energy (per atom) be-
tween the homogeneously relaxed icosahedral and the cuboc-
tahedral clusters RhN and PdN as a function of N , calculated
with the tight-binding model. (b) Same difference as in (a) but
the effect of an inhomogeneous relaxation, calculated with an
empirical model, has been added. The horizontal lines give the
asymptotic value when N → ∞. The curves joining the cal-
culated points are a guide for the eyes, they do not give the
energy difference for intermediate sizes.

and the corresponding difference in binding energy per
atom between these two clusters are given respectively
in Table 1 and Figure 1a. Clearly for both elements the
icosahedron is the preferred structure at small sizes, and
the critical size at which the relative stability becomes fa-
vorable to cuboctahedrons is larger for rhodium than for
palladium. This critical size is N = 561 for PdN clusters.
For RhN it is larger and we expect it to be attained for
N = 923. In Table 1 we have also given the binding energy
per atom of cuboctahedral and icosahedral PdN and RhN
when N tends to infinity. The binding energy per atom
of an infinite cuboctahedron is just the cohesive energy of
the corresponding bulk FCC metal. Let us consider now
an icosahedron with an arbitrary large number of atoms.
It is well-known that an icosahedron can be built from
20 identical tetrahedra possessing a common vertex and
connected with each other through adjacent faces, form-
ing twinning planes [29]. Each tetrahedron, with 4 faces
of (111) type, has a slightly distorted FCC structure. It

can be considered as made of (111) planes, parallel to its
external face, with an ABC stacking sequence but the dis-
tance between nearest neighbours inside these planes is
' 5% larger than the distance between nearest neighbour
atoms belonging to two adjacent planes. In the limit of
large N , not only the weight of surface atoms vanishes
as for the cuboctahedron but also that of the twinning
planes. Thus the binding energy per atom of an infinite
icosahedron is the cohesive energy of a distorted bulk FCC
structure. This cohesive energy is minimized with respect
to Rt, the ratio Rt/Rr being kept to the value rico. It is
found that the minimum occurs when the atomic volume
of the distorted structure is almost equal (actually very
slightly larger) to the atomic volume of the perfect FCC
crystal as expected from elasticity theory.

From Figure 1a it appears that rhodium and palladium
have a rather similar behaviour save for a scaling factor.
For small sizes the energy difference between the two ge-
ometries is larger (in favor of icosahedrons) for RhN than
for PdN and at the infinite limit this energy difference is
almost three times larger (in favor of cuboctahedron) for
rhodium (114 meV) than for palladium (41 meV).

Let us recall that all the results presented above have
been obtained by assuming an homogeneous atomic re-
laxation of the clusters. However a rigorous treatment
must involve an unconstrained relaxation, i.e., an inho-
mogeneous radial relaxation as well as tangential displace-
ments. In particular it is well-known that icosahedrons
have a rather peculiar relaxation around the central atom
[10,15,19] with a compression, increasing with size, of the
innermost shells. We have first checked this specific be-
haviour on the example of 55 atom clusters by allowing
independent relaxations of the two atomic shells, using
our tight-binding model. In order to define the positions
of these two shells, let us consider an atomic row go-
ing from the central to a vertex atom. We call d01 the
distance between the former atom and its first nearest
neighbour along this row and d12 the distance between
this neighbour and the latter atom. The corresponding
relaxations are defined as ∆d01/R0 = (d01 − R0)/R0 and
∆d12/R0 = (d12−R0)/R0. We indeed find that the relax-
ation is very different for the two geometries. For instance
in Pd55 rather large compressions (∆d01/R0 = −4.5%)
about the central atom are obtained while surface relax-
ations are more modest (∆d12/R0 = −3.6%) in the icosa-
hedron. In contrast, the FCC cluster has a small inter-
nal compression (−1.1%) but larger surface relaxations
(−3.1%). These results are in agreement with the ab ini-
tio calculations of Jennisson et al. [15] and in both cases
the energy difference with the homogeneously contracted
cluster is less than 1 meV per atom, i.e., at least one order
of magnitude smaller than the typical energy difference
between cuboctahedron and icosahedron with 55 atoms.

However it is not clear that these results are still
valid for larger clusters and with a fully (except for
symmetry) unconstrained relaxation. As previously men-
tioned, this could be investigated in the framework of our
tight-binding model but, in view of the computing time
needed for a systematic study, we have used the following
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empirical potential:

Etot = A
∑
i,j,j 6=i

exp
(
−p(Rij/R0 − 1)

)
− ξ

∑
i

(∑
j 6=i

exp
(
−2q(Rij/R0 − 1)

))α
(4)

with a smooth cut-off function beyond the fourth neigh-
bors. Note that this potential differs from the conventional
second moment potential in which α = 1/2. Indeed it is
well-known [30] that it is impossible to get both the cohe-
sive and the surface energies correctly with α = 1/2. This
is a serious problem when dealing with clusters in which
the atomic structure is determined by the competition be-
tween surface and bulk effects. Furthermore, another ex-
ponent (α = 2/3) has been proposed in the literature [31]
to account for higher moments and charge neutrality re-
quirements. In the particular case of Rh and Pd we have
found that, with α = 3/4, we have been able to reproduce
quite accurately the ab initio cohesive energy curve ver-
sus atomic spacing and the surface energies of the three
lowest index surfaces ((111), (100), (110)) while keeping
reasonable values for the elastic constants C and C′. The
corresponding parameters are A = 0.334 eV (0.259 eV),
ξ = 1.393 eV (1.026 eV), p = 9.53 (9.86), q = 2.48 (2.83)
for Rh (Pd). With this potential, we have optimized the
interatomic distances of the cuboctahedral and icosahe-
dral RhN and PdN clusters in three different ways up to
N = 1415:

(i) the breathing (or homogeneous) mode,
(ii) purely radial but inhomogeneous atomic displace-

ments,
(iii) displacements with radial as well as tangential com-

ponents.

We have found that the tangential relaxation has a
negligible effect on the total energy of the clusters. When
comparing the inhomogeneous radial relaxation to the
breathing mode, we have found that the binding energy
per atom at equilibrium in the cuboctahedral clusters is
almost unchanged (by less than 1 meV) while, as expected,
it is increased significantly in the icosahedral clusters.

Let us call ∆Ehom(N) = Ehom
ico (N) − Ehom

cubo(N) the
binding energy difference between the homogeneously re-
laxed icosahedron and cuboctahedron of size N and ∆(N)
its variation due to allowing inhomogeneous radial relax-
ation instead of the breathing mode. The latter quantity
obviously vanishes for N = 13 and our calculations using
the empirical potential show that ∆(N) is positive and
increases with size but saturates at large N .

The most simple way to improve our tight-binding
results for ∆Ehom(N) is to add the value of ∆(N) de-
duced from the empirical potential. Then it is seen that
a precise determination of the critical size at which the
cuboctahedron becomes more stable than the icosahedron
would require tight-binding calculations at sizes larger
than N = 561. In order to avoid lengthy calculations,
we have adopted the following extrapolation procedure.
First we have fitted the data for ∆Ehom(N) and ∆(N)

obtained by means of the empirical model in the range
13 ≤ N ≤ 561 using analytical expressions of the form:

f(N) = a0 + a1N
−1/3 + a2N

−2/3 + a3N
−1 (5)

the second, third and fourth terms account for surface,
edge and vertex effects, respectively. We have verified that
these expressions reproduce very accurately the calculated
data up to N = 1415 derived from the empirical model.
Then, an analytical expression as equation (5) was found
to fit perfectly the tight-binding data of ∆Ehom(N) up to
N = 561. The above arguments show that this fitted ex-
pression can be used confidently to extrapolate the tight-
binding data for this last quantity well beyond N = 561.
The results obtained by adding ∆(N) to it are given in
Figure 1b. This modifies the critical size to Nc = 1415
both for Rh and Pd.

In conclusion, due to the effect of a complete relaxation
the number of closed atomic shells necessary to make the
FCC cuboctahedron more stable than the icosahedron is
increased by one or two.

4 Local densities of states

One of the advantages of our model is its ability to give
not only the total energy but also the detailed electronic
structure with a reasonable amount of computer time. In
particular, the local density of states (LDOS) on site i,
defined as:

ni(E) = 2
∑
n,λ

c∗iλ(εn)ciλ(εn)δ(E − εn) (6)

where ciλ(εn) is the component of the eigenstate of energy
εn on the orbital λ centered at site i, are easily obtained.
They are very interesting quantities since they give some
indication on the localization of electronic states and on
the possible occurrence of local magnetism. Let us first
illustrate this possibility on the example of a large cluster
Rh309, for both geometries. The results are presented in
Figure 2 for the central atom (a), one atom of the first
atomic shell (b), the central atom of the square facet (of
type (100)) of the cuboctahedron which becomes an edge
atom in the icosahedron as a result of the Mackay transfor-
mation (c) (see Sect. 5), a vertex atom (d) and an atom
inside a triangular facet (of type (111)) (e). The LDOS
of the icosahedron have more structures than the corre-
sponding LDOS of the cuboctahedron. Indeed the icosa-
hedron has more symmetry elements than the cuboctahe-
dron and consequently a higher degree of degeneracy in
its electronic levels. This effect is particularly striking on
the central atom. Actually this atom, being a center of
symmetry of the cluster, has a very peculiar LDOS since
the antisymmetric wave functions have no weight on it,
whereas the weight of the symmetric ones is enhanced.
This is clearly seen in Figure 3 in which we present the
evolution with size of the LDOS on the central atom of
RhN cuboctahedral clusters. One can note that even at a
size as large as 309 atoms, this LDOS remains very dif-
ferent from the bulk one. On the contrary the LDOS (b),
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Fig. 2. The local densities of states at some specific sites of
cuboctahedral and icosahedral Rh309: (a) the central atom; (b)
an atom in the first atomic shell; (c) an atom in the center of
the square facet of the cuboctahedron which becomes an edge
atom of the icosahedron in the Mackay transformation (see
Fig. 3b); (d) a vertex atom; (e) an atom inside the triangular
facets. The dashed lines in the cuboctahedral structures give
the bulk density of states (b) and the LDOS on infinite (100)
and (111) surfaces in (c) and (e), respectively. The discrete
levels have been broadened by a Fermi function of with 0.05 eV.

(c), (e) shown in the left panel of Figure 2 are already
quite close to those of the bulk, the (100) and the (111)
surfaces, respectively. As expected the mean width of the
LDOS increases with the local coordination number, the
narrowest being that of the vertex atoms (d).

As pointed out in Section 3, experiments have shown
that RhN clusters have a noticeable magnetic moment up
to N ' 100. Our results suggest however that on some
specific sites of the icosahedral Rh309 a magnetic moment
may subsist. From simple arguments based on the Stoner
criterion with a Stoner parameter I = 0.69 eV [28] we can
deduce that this could occur on the vertex atoms, and
perhaps on the central atom.

5 Mackay transformation

Let us now precise how a cuboctahedron can be trans-
formed into an icosahedron. In this transformation [25] one
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Fig. 3. The evolution with size of the local density of states at
the central atom for cuboctahedral RhN clusters: (a) N = 13,
(b) N = 55, (c) N = 147, (d) N = 309. The discrete levels
have been broadened by a Fermi function of with 0.1 eV.

of the diagonals of each square face of the cuboctahedron
is contracted to the length ricodr, dr being the length of the
edges of the cuboctahedron (equal to its radius) while at
the same time this face is folded following the same diag-
onal so as to form two equilateral triangles of edges ricodr.
The corresponding displacements of the vertices are shown
in Figure 4 in which the axes of the coordinate frame have
been chosen normal to the square faces of the cuboctahe-
dron (cubic axes of the FCC lattice). It is easily seen that
this transformation is a highly symmetric one since the
three coordinate planes remain symmetry planes during
the transformation. Once the displacements of the atoms
located at the vertices are known, the displacements of all
atoms in the cluster are easily derived.

In this section we calculate the variation of the total
energy per atom during the distortion as a function of the
size of the cluster using the spd tight-binding model. Each
atom is displaced by a fraction f of its total displacement
and for each value of f an homogeneous relaxation is per-
formed so as to minimize the total energy. In view of the
simplicity of this distortion which preserves many symme-
tries, it is expected that the corresponding path is a good
candidate for this transformation.

The results for RhN clusters are shown in Figure 5.
It is seen that the 13 atom cuboctahedron is unstable,
i.e., it spontaneously transfers to an icosahedron. For
N = 55, 147 and 309 the energy profile is not mono-
tonic but presents a maximum around f = 0.45. Con-
sequently, the cuboctahedron is metastable, at least rela-
tive to this transformation, with an activation energy of
15 meV for N = 55, 55 meV for N = 147 and 76 meV
for N = 309. The activation energy for the inverse trans-
formation (ico → cubo) is 116 meV both for N = 55 and
147, and 104 meV for N = 309. The PdN clusters present
an analogous behaviour. For N = 13 the cuboctahedron
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Fig. 4. (a) Atomic displacements transforming a cuboctahe-
dron into an icosahedron with the same radial distance. (b)
The resulting icosahedron.

is also unstable. For N = 55, 147, and 309 atoms the
cuboctahedron is metastable and slightly distorted. Its
transformation to a perfect icosahedral structure needs
an activation energy of 12 meV for N = 55, 28 meV for
N = 147 and 45 meV for N = 309. The activation ener-
gies involved in the inverse transformation are 61 meV for
N = 55, 51 meV for N = 147 and 48 meV for N = 309.

It is worthwhile to emphasize that for both elements
the potential energy profile has a maximum even when
the cuboctahedron and the icosahedron have roughly the
same energy and it can be inferred that this maximum
will still exist at least in some range of larger sizes. This
could explain why icosahedral clusters may be observed at
sizes for which the cuboctahedron should be energetically
favoured. In addition, note that the activation barrier (per
atom) for the transition ico → cubo decreases with size.

In addition, we have seen in Section 3 (Tab. 1) that
the optimum radial distance of the icosahedron is al-
ways smaller than that of the cuboctahedron with the
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Fig. 5. The evolution of the potential energy profile of homo-
geneously relaxed RhN and PdN clusters during the Mackay
transformation for increasing values of N . f is a fraction of the
displacements shown in Figure 3a: f = 0 and 1 correspond to
the perfect cuboctahedron and icosahedron, respectively.

same number of atoms. Our calculations show that during
the Mackay transformation the radial distance contracts
monotonically.

Finally, let us discuss the effect of inhomogeneous ra-
dial relaxations with the help of the empirical potential
determined in Section 3. First we have verified that for
an homogeneous contraction the empirical potential leads
to results extremely similar to those obtained with the
tight-binding model, i.e., the cuboctahedron is unstable
for N = 13 and metastable at larger sizes. Furthermore,
the potential energy barrier between the two structures
has the same shape and a similar height with a saddle
point around f = 0.45. Then the lowering of the total
energy per atom due to inhomogeneous radial relaxation
has been calculated for f = 0 (perfect cuboctahedron),
f = 0.45 (saddle point), f = 1 (perfect icosahedron). It
almost vanishes for f = 0, is quite small for f = 0.45 (for
instance 7 meV for Rh309) and, as discussed in Section 4,
becomes significant but less than ' 20 meV for f = 1. As
a conclusion, we can state that inhomogeneous relaxations
do not induce drastic changes, they only slightly modify
the activation energies.
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6 Summary and conclusions

We have presented a systematic study of cuboctahedral
and icosahedral clusters of Rh and Pd with closed atomic
shells as a function of their number of atoms, in the frame-
work of a tight-binding method using a spd basis set,
assuming an homogeneous relaxation. This method has
allowed us to consider large sizes which are presently un-
reachable by ab initio calculations and to obtain the cor-
responding electronic structure which is ignored when us-
ing (semi)empirical potentials. Nevertheless, we have used
such a potential to discuss the effect of a complete, except
for symmetry constraints, relaxation,

Total energy calculations have shown that at small
sizes the icosahedron is the most stable structure and that,
due to inhomogeneous radial relaxation, the size at which
the cuboctahedron becomes energetically favoured is com-
parable for the two metals (around N = 1415). The anal-
ysis of the local densities of states reveals that the central
atoms have a very peculiar behaviour for symmetry rea-
sons even at a size as large as N = 309. In addition from
their values at the Fermi level it can be inferred that, even
though magnetism is not detectable in RhN for N ≥ 100,
some specific sites may still carry a magnetic moment, for
instance the vertex atoms in the icosahedral Rh309.

Finally the study of the potential energy profile during
the Mackay transformation which distorts continuously a
cuboctahedron into an icosahedron has shown that the
cuboctahedron is unstable for N = 13 whereas it becomes
metastable at intermediate sizes. This result could explain
the experimentally observed coexistence of both geome-
tries in some range of sizes.

It is our pleasure to thank M.F. de Féraudy and G. Torchet
for stimulating discussions.
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